
Submission to MICCAI 2023 Educational Challenge Huidong Xie and Weijie Gan

Introduction to Diffusion Models

Huidong Xie Weijie Gan

huidong.xie@yale.edu weijie.gan@wustl.edu

Yale WUSTL

Generative Model

Given samples of observed data x , the goal of generative models is to generate new samples that do not exist in the

original observed data. Data x could be anything, including images, audio, text, etc. When training a generative

model, we aim to train the model that approximates the data distribution p(x).

To generate non-existent samples, we build the generative models by mapping a noise distribution pz(z) to data

distribution p(x) as Gθ(z), where θ is the parameters of the model. If a well-trained model G can approximate this

mapping, we can then generate new instances in the data space by sampling new z from the noise distribution pz
and then feed into the trained network. To generate a wide variety of samples, we usually choose pz as Gaussian

distribution. The noise distributions z can be understood as latent space representations of observed samples x .

One of the most popular generative models is the Generative Adversarial Networks (GAN). GAN contains 2

networks, generator G and discriminator D. G models the data distribution p(x) and aims to generate new samples

from Gaussian noise. The network D takes either G(z) or samples from the observed data x as input, and tries to

discriminate if an input sample is from observed data x or is generated by network G.

Figure 1: Simplified diagram of GAN.

GAN is an effective image synthesis method that produces promising results. Diffusion is another model that

becomes increasingly popular recently for image synthesis. In this tutorial, we will start from the DDPM paper

(denoising diffusion probabilistic model) [1]. This was the first paper demonstrating the use of diffusion model for

synthesizing high-quality images.

Diffusion Model

In diffusion model, instead of sampling Gaussian noise as input to the generator network, we gradually add t steps

of Gaussian noise to the images until the original information in the input is completely destroyed. This ”gradually

adding noise” process is called the forward process or diffusion process. This process is fixed to a Markov chain

that gradually adds Gaussian noise.

q(x1:T |x0) :=
T∏
t=1

q(xt |xt−1), q(xt |xt−1) := N (xt ;
√
1− βtxt−1, βt I) (1)

Aug 2023

mailto:huidong.xie@yale.edu
mailto:weijie.gan@wustl.edu
https://arxiv.org/pdf/2006.11239.pdf

where
√
1− βt and βt represent the mean and variance of the Gaussian distribution at diffusion step t. In the

DDPM paper, authors re-parameterize αt := 1− βt and ᾱt :=
∏t
s=1 αs .

A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the

probability of each event depends only on the state attained in the previous event. Specifically, it means that the

image at time step (diffusion step) t only depends on the image at previous step t − 1.
Similarly, the reverse process, or ”removing noise process” could also be defined as a Markov chain with learned

means and variances, starting from complete Gaussian noise at the last time step T , p(xT) = N (xT ; 0, I).

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt , t),
∑
θ(xt , t)) (2)

where θ represents the trained parameters of the diffusion model. µθ(xt , t) and
∑
θ(xt , t)) are the learned mean

and variance at each time step.

Figure 2: Simplified diagram of Diffusion models. x0 is the same as x in Fig. 1.

We train the diffusion model so that we have the highest possibilities of observing original data distribution

(pθ(x0)). The network is trained by maximizing the log-likelihood of it (i.e., E(log pθ(x0))). In the DDPM paper,
it says the training is performed by optimizing the evidence lower bound (ELBO or variational lower bound) of it.

This is just a lower bound on the log-likelihood. Optimizing ELBO would be the same as optimizing (− log pθ(x0)).

E(− log pθ(x0)) ≤ Eq
[
− log

pθ(x0:T)

q(x1:T |x0)

]
(3)

The difference between ELOB and log pθ(x0) is exactly the KL (Kullback–Leibler) divergence between pθ(x0:T)

and q(x1:T |x0). KL divergence is a measure of the difference between 2 distributions.

log pθ(x0) = log pθ(x0)

∫
q(x1:T |x0)dx1:T (where

∫
q(x1:T |x0)dx1:T = 1) (4)

=

∫
q(x1:T |x0)(log pθ(x0))dx1:T (5)

= Eq(x1:T |x0)[log pθ(x0)] (definition of Expectation) (6)

= Eq(x1:T |x0)
[
log
pθ(x0, x1:T)

pθ(x1:T |x0)

]
(p(x) =

p(x, z)

p(z |x)) (7)

= Eq(x1:T |x0)
[
log
pθ(x0, x1:T)q(x1:T |x0)
pθ(x1:T |x0)q(x1:T |x0)

]
(8)

= Eq(x1:T |x0)
[
log
pθ(x0, x1:T)

q(x1:T |x0)

]
+ Eq(x1:T |x0)

[
log
q(x1:T |x0)
pθ(x1:T |x0)

]
(9)

= Eq(x1:T |x0)
[
log
pθ(x0, x1:T)

q(x1:T |x0)

]
+KL(q(x1:T |x0)||pθ(x1:T |x0)) (Definition of KL divergence) (10)

≥ Eq(x1:T |x0)
[
log
pθ(x0, x1:T)

q(x1:T |x0)

]
(KL is always larger than 0) (11)

2

https://en.wikipedia.org/wiki/Markov_chain
https://www.youtube.com/watch?v=8nogLkirA3I
https://en.wikipedia.org/wiki/Evidence_lower_bound
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

= Eq(x1:T |x0)
[
log
pθ(x0:T)

q(x1:T |x0)

]
(12)

Through this derivation, we demonstrated the ELBO [2]. Then we can plug in Equations 1-2 into ELBO to

get a more intuitive explanation of this objective.

log pθ(x0) ≥ Eq(x1:T |x0)
[
log
pθ(x0:T)

q(x1:T |x0)

]
(13)

= Eq(x1:T |x0)
[
log
p(xT)

∏T
t=1 pθ(xt−1|xt)∏T

t=1 q(xt |xt−1)

]
(14)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)

∏T
t=2 pθ(xt−1|xt)

q(xT |xT−1)
∏T−1
t=1 q(xt |xt−1)

]
(15)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)

∏T−1
t=1 pθ(xt |xt+1)

q(xT |xT−1)
∏T−1
t=1 q(xt |xt−1)

]
(16)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)
q(xT |xT−1)

]
+ Eq(x1:T |x0)

[
log

T−1∏
t=1

pθ(xt |xt+1)
q(xt |xt−1)

]
(17)

= Eq(x1:T |x0)
[
log pθ(x0|x1)

]
+ Eq(x1:T |x0)

[
log

p(xT)

q(xT |xT−1)

]
+ Eq(x1:T |x0)

[T−1∑
t=1

log
pθ(xt |xt+1)
q(xt |xt−1)

]
(18)

= Eq(x1|x0)
[
log pθ(x0|x1)

]
+ Eq(xT−1,xT |x0)

[
log

p(xT)

q(xT |xT−1)

]
+

T−1∑
t=1

Eq(xt ,xt+1,xt−1|x0)
[
log
pθ(xt |xt+1)
q(xt |xt−1)

]
(19)

= Eq(x1|x0)
[
log pθ(x0|x1)

]
+ Eq(xT−1|x0)

[
Eq(xT) log

p(xT)

q(xT |xT−1)

]
+

T−1∑
t=1

Eq(xt+1,xt−1|x0)
[
Eq(xt) log

pθ(xt |xt+1)
q(xt |xt−1)

] (20)

= Eq(x1|x0)
[
log pθ(x0|x1)

]
− Eq(xT−1|x0)

[
KL(q(xT |xT−1)||p(XT))

]
−

T−1∑
t=1

Eq(xt+1,xt−1|x0)
[
KL(q(xt |xt−1)||pθ(xt |xt+1)))

] (21)

= Eq(x1|x0)
[
log pθ(x0|x1)

]
− Eq(xT−1|x0)

[
KL(q(xT |xT−1)||p(xT))

]
−
T−1∑
t=1

Eq(xt+1,xt−1|x0)
[
KL(q(xt |xt−1)||pθ(xt |xt+1)))

] (22)

The first term Eq(x1|x0)
[
log pθ(x0|x1)

]
is the log-likelihood of the original input x0 given x1, the image after the

first diffusion step.

In the second term Eq(xT−1|x0)
[
KL(q(xT |xT−1)||p(xT))

]
, p(xT) is completely Gaussian, and q(xT−1|x0) is the

last ”adding noise” step. So this term is just difference between 2 Gaussian distribution, given the time step T is

large enough. Since this is just the KL divergence between 2 Gaussian distributions, this term requires no training.

The third term
∑T−1
t=1 Eq(xt+1,xt−1|x0)

[
KL(q(xt |xt−1)||pθ(xt |xt+1)))

]
is the difference between 2 distribution at

each time step t.

To this end, we have a more intuitive explanation of the ELBO objective. You may notice that this objective

(Equation 22) is different from the Equation (5) in the DDPM paper [1]. This is because the paper goes one step

forward, rewriting the diffusion step as q(xt |xt−1, x0) instead of q(xt |xt−1). The disadvantage of using q(xt |xt−1)
is that, this formula has 2 random variables xt and xt−1, which may be unstable in the training process. But luckily,

we know x0 (original input image) during training. Using Bayes rule, we can rewrite q(xt |xt−1, x0) and plug into
ELBO.

q(xt |xt−1) = q(xt |xt−1, x0) =
q(xt−1|xt , x0)q(xt |x0)

q(xt−1|x0)
(23)

Eq(x1:T |x0)
[
log
pθ(x0:T)

q(x1:T |x0)

]
= Eq(x1:T |x0)

[
log
p(xT)

∏T
t=1 pθ(xt−1|xt)∏T

t=1 q(xt |xt−1)

]
(24)

3

https://en.wikipedia.org/wiki/Bayes%27_theorem

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)

∏T
t=2 pθ(xt−1|xt)

q(x1|x0)
∏T
t=2 q(xt |xt−1)

]
(25)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)

∏T
t=2 pθ(xt−1|xt)

q(x1|x0)
∏T
t=2 q(xt |xt−1)

]
(26)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)
q(x1|x0)

+ log

T∏
t=2

pθ(xt−1|xt)
q(xt |xt−1, x0)

]
(27)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)
q(x1|x0)

+ log

T∏
t=2

pθ(xt−1|xt)
q(xt−1|xt ,x0)q(xt |x0)

q(xt−1|x0)

]
(28)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)
q(x1|x0)

+ log

T∏
t=2

pθ(xt−1|xt)q(xt−1|x0)
q(xt−1|xt , x0)q(xt |x0)

]
By expending the above equation for a few steps, you will notice that some terms just cancel out.

(29)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)
q(x1|x0)

+ log
q(x1|x0)
q(xT |x0)

+

T∑
t=2

log
pθ(xt−1|xt)
q(xt−1|xt , x0)

]
(30)

= Eq(x1:T |x0)
[
log

(p(xT)pθ(x0|x1)
q(x1|x0)

q(x1|x0)
q(xT |x0)

)
+

T∑
t=2

log
pθ(xt−1|xt)
q(xt−1|xt , x0)

]
(31)

= Eq(x1:T |x0)
[
log
p(xT)pθ(x0|x1)
q(xT |x0)

+

T∑
t=2

log
pθ(xt−1|xt)
q(xt−1|xt , x0)

]
(32)

= Eq(x1:T |x0)
[
log pθ(x0|x1) + log

p(xT)

q(xT |x0)
+

T∑
t=2

log
pθ(xt−1|xt)
q(xt−1|xt , x0)

]
(33)

= Eq(x1:T |x0)
[
log pθ(x0|x1)

]
+ Eq(x1:T |x0)

[
log

p(xT)

q(xT |x0)

]
+

T∑
t=2

[
Eq(x1:T |x0) log

pθ(xt−1|xt)
q(xt−1|xt , x0)

]
(34)

= Eq(x1|x0)
[
log pθ(x0|x1)

]
+ Eq(xT |x0)

[
log

p(xT)

q(xT |x0)

]
+

T∑
t=2

[
Eq(xt ,xt−1|x0) log

pθ(xt−1|xt)
q(xt−1|xt , x0)

]
(35)

= −KL(q(xT |x0)||p(xT))︸ ︷︷ ︸
LT

−
T∑
t=2

Eq(xt |x0)
[
KL(q(xt−1|xt , x0)||pθ(xt−1|xt))

]
︸ ︷︷ ︸

Lt−1

+Eq(x1|x0)
[
log pθ(x0|x1)

]
︸ ︷︷ ︸

L0

(36)

To this end, we get the same formula as the Equation (5) in the DDPM paper, except for the negative sign.

In the DDPM paper, the authors put a negative sign before the ELBO equation.

Similarly, LT is just the difference between 2 Gaussian distributions, and thus do not require training. Lt−1
is the difference between the diffusion step and the reverse step for all time steps, but this time, we have the

grounth-truth image x0 as input. L0 is the same as that in Equation 22.

During the training process, we need to gradually add Gaussian noise to time step t for every training step.

You can imagine that this process is time consuming. There is one key advantage of using Gaussian noise instead

of other noise distributions. For an arbitrary time step t, instead of gradually adding noise, we can directly obtain

the distribution at time step t by:

q(xt |x0) = N (xt ;
√
(ᾱt)x0, (1− ᾱt)I) (37)

Here we will demonstrate this. For an arbitrary time step t with added Gaussian noise ϵ:

xt =
√
αtxt−1 +

√
1− αtϵ′t−1 (38)

=
√
αt(
√
αt−1xt−2 +

√
1− αt−1ϵ′t−2) +

√
1− αtϵ′t−1 (39)

=
√
αtαt−1xt−2 +

√
αt − αtαt−1ϵ′t−2 +

√
1− αtϵ′t−1 (40)

Note that the sum of 2 normally distributed random variables is normal, with its mean being the sum of the

two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the

sum of the squares of the standard deviations). With this property, we can further derive Equation 40.

4

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

=
√
αtαt−1xt−2 +

√
αt − αtαt−1ϵ′t−2 +

√
1− αtϵ′t−1 (41)

=
√
αtαt−1xt−2 +

√√
αt − αtαt−1

2
+

√
1− αt

2
ϵt−2 (42)

the noise ϵ is different here, so we remove the ′ (43)

=
√
αtαt−1xt−2 +

√
αt − αtαt−1 + 1− αtϵt−2 (44)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt−2 (45)

Keep substituting xt−2, xt−3 ... (46)

=

√√√√ t∏
s=1

αsx0 +

√√√√1− t∏
s=1

αsϵ0 (47)

Remember the authors re-parameterize αt := 1− βt and ᾱt :=
t∏
s=1

αs (48)

=
√
ᾱtx0 +

√
1− ᾱtϵ0 (49)

∼ N (xt ;
√
(ᾱt)x0, (1− ᾱt)I) (50)

Then we get Equation 37 (51)

This means that to get the noisy image xt at arbitrary time step t, instead of gradually adding noise, we can

directly compute it, which save a lot of time during training.

Now, let’s go back to the DDPM paper. In Equation (5) of the DDPM paper (or Equation 36 in this tutorial),

it says this equation uses KL divergence to directly compare pθ(xt−1|xt)) against the forward diffusion process,
which is q(xt−1|xt , x0). It says this is tractable when conditioned on x0. This is easy to understand, if we know x0,
we definitely know xt−1 and xt because both of them can be obtained just by adding Gaussian noise to x0. In the

DDPM paper, it says:

q(xt−1|xt , x0) = N (xt−1; µ̃t(xt , x0), β̃t I) (52)

where µ̃t(xt , x0) :=

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)
1− ᾱt

xt and β̃t :=
1− ᾱt−1
1− ᾱt

βt (53)

Let’s see how we get this. First, expanding q(xt−1|xt , x0) using Bayes rule.

q(xt−1|xt , x0) =
q(xt |xt−1, x0)q(xt−1|x0)

q(xt |x0)
(54)

=
N (xt ;

√
αtxt−1, (1− αt)I)N (xt−1;

√
ᾱt−1x0), (1− ᾱt−1)I

N (xt ;
√
ᾱtx0, (1− ᾱt)I)

(55)

Just expressing everything in its Gaussian form. (56)

Note that the probability density function of Gaussian is:
1

σ
√
2π
e−

1
2
(x−µ
σ
)2 (57)

Plug it in and let’s ignore the
1

σ
√
2π
part (58)

∝ e
− 1
2
(
xt−
√
αt xt−1√
1−αt

)2

e
− 1
2
(
xt−1−

√
ᾱt−1x0√

1−ᾱt−1
)2
/
e
− 1
2
(
xt−
√
ᾱt x0√

1−ᾱt
)2

(59)

= exp
[
−
1

2
(
xt −

√
αtxt−1√

1− αt
)2 −

1

2
(
xt−1 −

√
ᾱt−1x0√

1− ᾱt−1
)2 +

1

2
(
xt −

√
ᾱtx0√

1− ᾱt
)2
]

(60)

= exp
[
−
1

2

((xt −√αtxt−1)2
1− αt

+
(xt−1 −

√
ᾱt−1x0)

2

1− ᾱt−1
−
(xt −

√
ᾱtx0)

2

1− ᾱt

)]
(61)

Remember (x − y)2 = x2 − 2xy + y2, use it to expend numerators (62)

= exp
{
−
1

2

[(x2t − 2√αtxt−1xt + αtx2t−1)
1− αt

+
(x2t−1 − 2

√
ᾱt−1xt−1x0 + ᾱt−1)

1− ᾱt−1

−
(x2t − 2

√
ᾱtx0xt + ᾱtx

2
0)

1− ᾱt

]} (63)

Let’s ignore the terms that only depend on x0, xt , and different α (64)

5

As these are given terms with respect to xt−1 (65)

∝ exp
{
−
1

2

[(−2√αtxt−1xt + αtx2t−1)
1− αt

+
(x2t−1 − 2

√
ᾱt−1xt−1x0)

1− ᾱt−1

]}
(66)

= exp
{
−
1

2

[−2√αtxt−1xt
1− αt

+
αtx

2
t−1

1− αt
+

x2t−1
1− ᾱt−1

−
2
√
ᾱt−1xt−1x0
1− ᾱt−1

]}
(67)

= exp
{
−
1

2

[
x2t−1(

αt
1− αt

+
1

1− ᾱt−1
)− 2xt−1(

√
ᾱt−1x0
1− ᾱt−1

+

√
αtxt
1− αt

)
]}

(68)

= exp
{
−
1

2

[
x2t−1(

1− ᾱt
(1− αt)(1− ᾱt−1)

)− 2xt−1(
√
ᾱt−1x0
1− ᾱt−1

+

√
αtxt
1− αt

)
]}

(69)

= exp
{
−
1

2

(1− ᾱt
(1− αt)(1− ᾱt−1)

)[
x2t−1 − 2xt−1

(
√
ᾱt−1x0
1−ᾱt−1 +

√
αtxt
1−αt)

1−ᾱt
(1−αt)(1−ᾱt−1)

]}
(70)

= exp
{
−
1

2

(1− ᾱt
(1− αt)(1− ᾱt−1)

)[
x2t−1 − 2xt−1

(
√
ᾱt−1x0
1−ᾱt−1 +

√
αtxt
1−αt)(1− αt)(1− ᾱt−1)
1− ᾱt

]}
(71)

= exp
{
−
1

2

(1− ᾱt
(1− αt)(1− ᾱt−1)

)[
x2t−1 − 2xt−1

√
ᾱt−1x0(1− αt) +

√
αtxt(1− ᾱt−1)

1− ᾱt

]}
(72)

= exp
{
−
1

2

(1
(1−αt)(1−ᾱt−1)

1−ᾱt

)[
x2t−1 − 2xt−1

(√ᾱt−1(1− αt)
1− ᾱt

x0 +

√
αt(1− ᾱt−1)
1− ᾱt

xt

)]}
(73)

Does it look familiar? Take a look at the PDF of Gaussian and Equation 53 (74)

∝ N
(
xt−1;

√
ᾱt−1(1− αt)
1− ᾱt

x0 +

√
αt(1− ᾱt−1)
1− ᾱt

xt︸ ︷︷ ︸
µ̃t(xt ,x0)

,
(1− ᾱt−1)
1− ᾱt

(1− αt)︸ ︷︷ ︸
β̃t

)
(75)

Remember 1− αt = βt (76)

To this end, we show how the Equation (7) in the DDPM paper was derived. The goal of training the diffusion

model is to make q(xt−1|xt , x0) and pθ(xt−1|xt) as close as possible. As discussed previously, we can express both
as Gaussian. The KL divergence between 2 Gaussian distributions can be calculated as:

KL(N0||N1) =
1

2

(
tr(

∑−1
1

∑
0)− k + (µ1 − µ0)T

∑−1
1 (µ1 − µ0) + ln(

det
∑
1

det
∑
0
)
)

(77)

where µ,
∑
, and k are means, covariance matrices, and dimensions of the Gaussian distributions.

In the DDPM paper, it says the variances can be learned or held as constant hyperparameters. Let’s make it

constant first, and set it to match the variances of the forward diffusion process. The goal of training diffusion

model is to make the forward diffusion and backward denoising process as close as possible. Remember, the

covariance of a random variable with itself is just the variance.

arg min
θ

KL(q(xt−1|xt , x0)||pθ(xt−1|xt)) (78)

= arg min
θ

KL(N (xt−1; µ̃t ,
∑
t)||N (xt−1; µ̃θ,

∑
t)) (79)

= arg min
θ

1

2

[
ln1− k + tr(

∑−1
t

∑
t) + (µ̃θ − µ̃t)T

∑−1
t (µ̃θ − µ̃t)

]
(80)

Note that tr(
∑−1
t

∑
t) = k (81)

= arg min
θ

1

2

[
(µ̃θ − µ̃t)T

∑−1
t (µ̃θ − µ̃t)

]
(82)

= arg min
θ

1

2

[
(µ̃θ − µ̃t)T (σ2t I)−1(µ̃θ − µ̃t)

]
(83)

= arg min
θ

1

2σ2t

[
(µ̃θ − µ̃t)T I(µ̃θ − µ̃t)

]
(84)

Only the diagonal part is kept, which is just L2 (85)

= arg min
θ

1

2σ2t

[
||µ̃t − µ̃θ||22

]
(86)

Here, we reach the Equation (8) in the DDPM paper. We show that to train a diffusion model, we can just

train the network so that the mean of the reverse denoising process is close to the mean of the forward process.

6

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions

Remember that xt =
√
ᾱtx0 +

√
1− ᾱtϵ0. And x0 = 1√

ᾱt
(xt −

√
1− ᾱtϵ). And we also have µ̃t(xt , x0) :=

√
ᾱt−1βt
1−ᾱt x0 +

√
αt(1−ᾱt−1)
1−ᾱt xt . Let’s plug them into Equation 86.

arg min
θ

1

2σ2t

[
||µ̃t(xt , x0)− µ̃θ(xt , t)||22

]
(87)

=
1

2σ2t

[
||
√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)
1− ᾱt

xt − µ̃θ(xt , t)||22
]

(88)

=
1

2σ2t

[
||
√
ᾱt−1βt
1− ᾱt

1√
ᾱt
(xt −

√
1− ᾱtϵ) +

√
αt(1− ᾱt−1)
1− ᾱt

xt − µ̃θ(xt , t)||22
]

(89)

Remember ᾱt :=

t∏
s=1

αs (90)

=
1

2σ2t

[
||
βt
1− ᾱt

1√
αt
(xt −

√
1− ᾱtϵ) +

√
αt(1− ᾱt−1)
1− ᾱt

xt − µ̃θ(xt , t)||22
]

(91)

=
1

2σ2t

[
||
βt

1√
αt
(xt −

√
1− ᾱtϵ) +

√
αt(1− ᾱt−1)xt

1− ᾱt
− µ̃θ(xt , t)||22

]
(92)

=
1

2σ2t

[
||
βt(xt −

√
1− ᾱtϵ)√

αt(1− ᾱt)
+

√
αt(1− ᾱt−1)xt
1− ᾱt

− µ̃θ(xt , t)||22
]

(93)

=
1

2σ2t

[
||

βtxt√
αt(1− ᾱt)

−
βt
√
1− ᾱtϵ√

αt(1− ᾱt)
+

√
αt(1− ᾱt−1)xt
1− ᾱt

− µ̃θ(xt , t)||22
]

(94)

=
1

2σ2t

[
||

βtxt√
αt(1− ᾱt)

−
βt
√
1− ᾱtϵ√

αt(1− ᾱt)
+
αt(1− ᾱt−1)xt√
αt(1− ᾱt)

− µ̃θ(xt , t)||22
]

(95)

=
1

2σ2t

[
||xt
βt + αt − αt ᾱt−1√
αt(1− ᾱt)

−
βt
√
1− ᾱt√

αt(1− ᾱt)
ϵ− µ̃θ(xt , t)||22

]
(96)

Note that αt ᾱt−1 = ᾱt and βt = 1− αt (97)

=
1

2σ2t

[
||xt

1− ᾱt√
αt(1− ᾱt)

−
βt
√
1− ᾱt√

αt(1− ᾱt)
ϵ− µ̃θ(xt , t)||22

]
(98)

=
1

2σ2t

[
||xt

1√
αt
−
βt
√
1− ᾱt√

αt(1− ᾱt)
ϵ− µ̃θ(xt , t)||22

]
(99)

=
1

2σ2t

[
||xt

1√
αt
−

βt√
αt
√
1− ᾱt

ϵ− µ̃θ(xt , t)||22
]

(100)

=
1

2σ2t

[
||
1√
αt
(xt −

βt√
1− ᾱt

ϵ)− µ̃θ(xt , t)||22
]

(101)

From Equation 101, we can see µ̃θ must predict
1√
αt
(xt − βt√

1−ᾱt
ϵ) given xt , which is consistent with the

Equation (11) in the DDPM paper. With the predicted mean, and the fixed variance (can be learned or held as

constant hyper-parameter). After training, the sampling process becomes:

xt−1 =
1√
αt
(xt −

βt√
1− ᾱt

ϵ) + σtz (102)

where z ∼ N (0, I)
You may noticed that in Algorithm 1 of the DDPM paper, the training is achieved by computing the difference

between 2 noise variables. We can just substitute 1√
αt
(xt − βt√

1−ᾱt
ϵ) into Equation 86 and train the neural network

output ϵ(xt , t) to be noise vector ϵ

arg min
θ

1

2σ2t

[
||µ̃t − µ̃θ||22

]
(103)

= arg min
θ

1

2σ2t

[
||
1√
αt
(xt −

βt√
1− ᾱt

ϵ)−
1√
αt
(xt −

βt√
1− ᾱt

ϵ(xt , t))||22
]

(104)

= arg min
θ

1

2σ2t

[
|| −

βt√
αt
√
1− ᾱt

ϵ+
βt√

αt
√
1− ᾱt

ϵ(xt , t))||22
]

(105)

= arg min
θ

1

2σ2t

βt√
αt
√
1− ᾱt

[
||ϵ(xt , t)− ϵ)||22

]
(106)

7

= arg min
θ

1

2σ2t

β2t
αt(1− ᾱt)

[
||ϵ(xt , t)− ϵ||22

]
(107)

To this end, we obtained the Equation (12) in the DDPM paper. Equations 107 and 86 are the same objective.

But as discussed in the DDPM paper, training using Equation 107 usually lead to better results. The objective of

diffusion models is always Equation 78. If we make the model to output the noise ϵ, the mean at step t becomes
1√
αt
(xt − βt√

1−ᾱt
ϵ(xt , t)). We can also make it to produce x0 with some formulation changes, and the mean will

become
√
ᾱt−1(1−αt)
1−ᾱt x0 +

√
αt(1−ᾱt−1)
1−ᾱt xt . Both ways are the same. In the DDPM paper, the network outputs noise,

so their sampling is xt−1 =
1√
αt
(xt − βt√

1−ᾱt
ϵ(xt , t)) + σtz, where z ∼ N (0, I)

This concludes this introductory tutorial for diffusion models. Hope it helps.

References

[1] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models.” [Online]. Available:

http://arxiv.org/abs/2006.11239

[2] C. Luo, “Understanding diffusion models: A unified perspective.” [Online]. Available: http:

//arxiv.org/abs/2208.11970

8

http://arxiv.org/abs/2006.11239
http://arxiv.org/abs/2208.11970
http://arxiv.org/abs/2208.11970

